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Abstract. The linear magnetostrictionλ2 has been measured in the TbxY1−xAl 2 intermetallic
compounds. The Zener power law, which givesλ2 as proportional to the third powerm3 of the
reduced magnetization, is found to be valid in the ferromagnetic phase of TbAl2. For x < 1
the compounds are weak random anisotropy magnets, and in the quasisaturated regime induced
by a magnetic fieldλ2 is still proportional tomp , but the exponentp is smaller than three.p
increases with the field and approaches three in the high-field limit (12 T). A relation between
the violation of the Zener power law and the reduction of the magnetization in the random
anisotropy systems is derived, and is compared with the experimental results.

1. Introduction

For ferromagnets Zener’sn(n + 1)/2 power law of linear magnetostriction [1],λn,
where n is an even integer, relates the reduced magnetostrictionλn(T , H)/λn(0, H) at
temperatureT and applied magnetic fieldH to the reduced magnetizationm(T , H) ≡
M(T, H)/M(0, H) = 〈Jz〉T /〈Jz〉0 in the well known form [2]

λn(T , H)/λn(0, H) = m(T , H)n(n+1)/2. (1)

n is the order of the quantum spherical harmonicY 0
n (J) (or Stevens’ operatorO0

n(J) and
J the ionic total angular momentum, with projectionJz along the quantization axis. This
law, valid at low enough temperatures, is ofextremegenerality, only requiring single-ion
anisotropy of crystal electric field (CEF) origin, localized magnetic moments and ionic low
energy levels equally spaced [3]. It appears because of the relationship found between
the averages〈Y 0

n (J)〉T and 〈Y 0
1 (J)〉T ≡ 〈Jz〉T , when the quantization axis is rotated to

coincide with the sample average magnetization [2],M , and the ionicJ angular momentum
distribution around theM direction is assumed to have cylindrical symmetry [1].〈. . .〉T
is the canonical thermal average, i.e.〈. . .〉T = Tr(ρY 0

n )/ Tr ρ, whereρ(T , H) is the density
matrix. This law applies to any irreducible magnetostrictive strain of a crystal or to the
linear (also called anisotropic) magnetostriction in polycrystalline samples. Although such
a relation derives from a particular feature within the mean-field approximation, it can be
shown that the same result is obtained in all quasi-independent collective excitation theories
and within the framework of the one-particle density matrix, as appearing in Green function
theories [4]. One of those theories is, indeed, the spin wave approximation, used in this
work.
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Usually the strongest contribution to the measured magnetostrictive irreducible strains
in crystals or to the linear magnetostriction in polycrystalline samples is then = 2 or
second-order striction and therefore we will focus our attention on it. Then we have

λ2(T , H)/λ2(0, H) = 〈Y 0
2 (J)〉T /〈Y 0

2 (J)〉0 = m3(T , H) (2)

whereY 0
2 (J) = 3J 2

z − J (J + 1). It should be clearly stated that (1) and (2) are only valid
for good 3D Heisenberg ferromagnets, with localized moments.

Recently much work has been done on linear magnetostriction for magnetically
disordered amorphous alloys, based both on magnetic transition metals and on rare earths
(REs) [5]. However for the key case (as we shall see) of crystalline disorderly diluted (by a
nonmagnetic partner such as Y, Sc, La or Lu) RE intermetallic compounds such information
is not available. It seems natural to look for some kind of Zener-like law for them. Elsewhere
[6] we have presented an early version of a model for linear magnetostriction in disordered
quasiferromagnets, which predictsp exponents which can be rather smaller than three.
This happens in fact for magnets having a random distribution of local easy magnetization
axes, i.e. for the random magnetic anisotropy (RMA) magnets. This prediction is now
exposed in greater detail and tested with available magnetostriction data for the intermetallic
Laves phase pseudobinaries TbxY1−xAl 2. The crystalline character of our systems is the
mentioned key point: to dispose of a reference compound wherep = 3, i.e. TbAl2, which
is a good 3D Heisenberg ferromagnet with〈111〉 easy direction andTc = 103 K [7].
A good many experimental probes and magnetic measurements [8] have shown that the
TbxY1−xAl 2 series depicts weak RMA. The magnetic phase diagram [8] shows the presence
of paramagnetic (P), spin glass (SG) and correlated spin glass (CSG) phases, with the triple
point atxtr = 0.27 andTtr = 8.6 K, above which the SG is reentrant into the CSG phase,
up to aboutx = 0.5, where it seems to collapse.

A good descriptive Hamiltonian for localized moment RMA systems is that of Harris
and coworkers [9],

H = −(1/2)J0(gJ − 1)2
∑
l 6=l′

Jl · Jl′ − D
∑

l

(âl · Jl)
2 − gJ µBH ·

∑
l

Jl (3)

whereJ0 is the effective spin exchange interaction,D the local CEF strength,̂al the local
easy axis at sitel, gJ the Land́e factor andH the applied magnetic field. For RExY1−xAl 2

(RE = Dy, Tb) magnets the RMA can have different origins [10]. The most likely is through
the following magneto-elastic coupling (MEC) amplifying effect. Random substitutions of
the smaller radius Y3+ ions will produce cubic symmetry distorting local strains, which
coupled toJ through the MEC will give rise to an axial CEF of random direction gradient.
The estimatedD/J0 ratio from this source is∼= 0.04 [8, 10]. Other possible sources of RMA
are the difference in electron screening for the Tb3+ and Y3+ ions and the Dzyaloshinski–
Moriya off-diagonal exchange for whichD/J0 ≈ 0.1 [8, 10]. The point is that the expected
RMA is weak, as a good many experiments confirm [8]. Perhaps it is worthwhile to comment
that the mere partial substitution of Tb by another RE with different anisotropy would not
give a fully random easy direction distribution, and moreover the anisotropy would not be
weak.

In weak RMA systems when the conditionHex � H > HRMA is fulfilled, where
Hex(= CJJ0(a/Ra)

2/gµB) is the effective exchange field andHRMA(= 4JD/gµB) the
RMA one [11], one has aferromagnet of wandering axis(FWA), where long-range
ferromagnetic order (LRFO) along the applied fieldH is formed, but the transverse
ferromagnetic order is limited to distancesR⊥ = (Hex/H)1/2Ra [11, 12]. Ra is the structural
correlation length,a the nearest-neighbour distance andC a constant approximately equal to
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unity. Hence no overall LRFO is developed, as was predicted for spatial dimensiond < 4
[13], althoughR⊥ can be substantial.

2. Experimental details

The pseudobinary C-15 Laves phase cubic intermetallics TbxY1−xAl 2 (nominally 0.25 <

x < 1.00) were prepared by argon arc melting from their constituents, aluminium of
99.999% and terbium and yttrium of 99.9% purities. The melted buttons were remelted
several times in order to attain good homogeneity and annealed at 900◦C for 1 week in
high vacuum (4× 10−6 mbar). Powder x-ray diffraction showed that the structure was the
Laves phase C-15 one. The measured lattice parameters, using the extrapolation Nelson–
Riley technique, were in between the parameters for TbAl2 and YaAl2 [14]. The existence of
secondary phases was investigated using scanning electron microscopy (SEM) in the electron
backscattered mode, and no foreign phases were detected. The chemical compositions were
determined by SEM x-ray energy dispersion fluorescence, the measured compositions being
x = 0.24, 0.48, 0.59, 0.87 and 1.0. Within this work also a single crystal of TbAl2 was
investigated; it was grown using the Czochralsky technique, the sample having the form of a
cylinder 6 mm in diameter by 1 mm in thickness, with the cylinder basis coinciding with the
(110) plane. In order to avoid the effect on the measured magnetization of a possible grain
preferential orientation, we cut the samples in the form of a disc with its plane perpendicular
to the button cooling axis after the melting. The magnetization was measured within this
plane.

Magnetization measurements were performed, using a commercial VSM, between 4 K
and well above theTCSG(x) boundary, i.e. the temperatures where the transitions from
paramagnetic to CSG structure occur [8]. The applied magnetic fields were between∼= 0 and
12 T, produced with a superconducting solenoid. The accuracy of the measured magnetic
moments was±5 × 10−6 emu. The magnetostriction measurements were performed in the
same ranges of temperature and field, using the well known strain-gauge technique, the
sensitivity being±5 × 10−7. Great care was exercised in the calibration of the gauge
factor at the lowest temperatures of measurement. The calibration was performed by
using the well known thermal expansion of a copper sample (purity 99.999%) against
pure fused silica, for which the thermal expansion coefficient is comparatively negligible
(∼= 5× 10−7–5× 10−6 K−1). The magnetostriction was measured in directions parallel,λ‖,
and perpendicular,λ⊥, to the applied magnetic field, in order to determine the linear or
anisotropic striction, i.e.λ2 = λ‖ −λ⊥ = (3/2)(λ‖ −ω/3), whereω is the volume strain. In
figures 1 and 2 we respectively present the magnetization and magnetostriction isotherms
for the compound Tb0.59Y0.41Al 2, which is quite representative of the studied compounds,
where we can see that neither the magnetization nor the magnetostrictions saturate at the
lowest temperature even at 12 T (see also figure 3 for the 4 K magnetization isotherms of
the studied compounds).

3. A magnetostriction spin wave model for weak random magnetic anisotropy
systems

Our magnetostriction spin wave (s.w.) model [6] deals with the magnetization dependence
of λ2 for weak RMA systems within the FWA regime (see section 1), i.e. for a system
quasisaturated under a sufficiently strong applied magnetic field. The crucial difference
from magnetically well ordered systems is that because of the structural disorder the thermal
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Figure 1. Magnetization isotherms against applied magnetic field for the intermetallic compound
Tb0.59Y0.41Al 2.

averages〈Jz〉T and 〈Y 0
n (J)〉T (see section 1) should now include the average over the

disorder of the random easy axis distribution,〈· · ·〉c, and thereforeλ2(T , H)/λ2(0, H) and
m(T , H) will adopt the forms

λ2(T , H)/λ2(0, H) = 〈〈Y 0
2 (J)〉T 〉c/〈Y 0

2 (J)〉c m(T , H) = 〈〈Jz〉T 〉c/〈Jz〉c. (4)

We have elsewhere [11] developed in full detail an s.w. model for weak RMA systems
within the FWA regime (see section 1), which we will briefly outline here, in order to
understand the main points of the s.w. magnetostriction model. The main purpose of such a
presentation is to introduce the diagonalization transformations followed with Hamiltonian
(3), which are needed in order to calculateλ2(T , H). In fact in order to perform such
a diagonalization it is convenient to work in the magnon space. For such a purpose, we
express the angular momentum operatorsJ z

l , J+
l andJ−

l in terms of the site spin deviation
operatorsa+

l and a−
l , which in turn are transformed to creation and annihilation magnon

operatorsa+
k and a−

k respectively, of wavevectork. In this way we obtain the following
Hamiltonian [11]:

H =
∑

k

ε(k)a+
k ak − SD√

N

∑
k,k′

{−Y20(k
′ − k)a+

k ak′ + Y22(−k − k′)a+
k ak′ }

−
√

2S3/2D
∑

k

(Y+
20(−k)ak) + CC (5)

where ε(k) = Ak2 + gJ µBH is the unperturbed magnon energy, with an s.w. stiffness
constantA = C ′J0Sa2, whereS = (gJ − 1)J is the spin quantum number,a the lattice
constant andC ′ a constant depending on the crystalline structure. The termsY20(k

′ − k),
Y22(−k−k′) andCC are the Fourier transforms of the complex spherical harmonicsYnm(âl)

[11]. The Hamiltonian (5) is of the Holstein–Primakoff type but differs from it in the terms
linear in a+

k and ak and in the non-diagonal terms within the curly brackets. These last
terms take into account the scattering suffered by the s.w. from the crystal field of random
easy axisâl. It was shown [11] that the linear terms are removed by the diagonalization
transformations

ak = αk + ck andCC (6)
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Figure 2. Magnetostriction isotherms for the compound Tb0.59Y0.41Al 2: (a) parallel(λ‖) to the
applied magnetic field,H; (b) perpendicular(λ⊥) to H.

whereαk and α+
k are boson operators andck are c-numbers. A second transformation is

required to fully diagonalize Hamiltonian (5), of the form [11]

αk = βk +
∑
k′

(ukk′βk′ + vkk′β+
k′) andCC. (7)

The form of the matricesukk′ and vkk′ can be found elsewhere [11], andβk and β+
k are

again boson operators.
It can be easily shown that the crystal space transformations diagonalizing Hamiltonian

(3) are the ones obtained by Fourier transforming jointly (6) and (7). In this way we obtain

al = (1 + ul)αl + vlα
+
l + cl andCC (8)

whereαl, α+
l are dynamic boson operators,cl, c+

l , static disorder spin deviationc-numbers
and ul and vl the Fourier transforms of the matricesukk′ and vkk′ . These matrices again
account for the dynamical s.w. scattering by the RMA disorder. The particular expressions
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Figure 3. Low-temperature (4 K) magnetization isotherms for the polycrystalline TbxY1−xAl 2

compounds, within the correlated spin glass regime of the magnetic phase diagram. Inset, the
Tb concentration,x, dependence of the 0 K extrapolated ‘saturation’ (H = 12 T) magnetic
moment for this series of compounds.

for all of these matrices and operators are not needed here in order to obtain the required
relation betweenλ2(T , H)/λ2(0, H) andm(T , H) and they will be skipped. In fact we can
write

M(T, H)/gJµB = 1 − J−1〈〈a+
l al〉T 〉c (9)

and by use of (8) the 0 K magnetization becomes

M(0, H)/gJµB = 1 − J−1{〈c+
l cl〉c + 〈v+

l vl〉c}. (10)

Also,

〈〈Y 0
2 (J)〉T 〉c = 3J 2 − J (J + 1) − 3(2J − 1)〈〈a+

l al〉T 〉c + 3〈〈a+
l a+

l alal〉T 〉c. (11)

Then from (9) and (11) we readily obtain

〈〈Y 0
2 (J)〉T 〉c = 3J 2 − J (J + 1) − 3J (2J − 1)(1 − (gJµB)−1M(T, H))

+6J 2(1 − (gJµB)−1M(T, H))2 (12)

where the last term in (12) originates from the decoupling of the quartic term in (11), i.e.

〈〈a+
l a+

l alal〉T 〉c = 2〈〈a+
l al〉T 〉2

c (13)

which seems in principle a good enough approximation whenH � Hex , as proved in [11].
The important result issuing from (12) is the possibility of expressing〈〈Y 0

2 (J)〉T 〉c and
〈Y 0

2 (J)〉c only in terms ofJ andM(T, H) andM(0, H) respectively, and henceλ2. In fact
from (9), (10) and (12) it is easy to arrive at the expression

λ2(T , H)

λ2(0, H)
= 2J −1−3(2J −1)(1−(gJ µBJ )−1M(T, H))+6J [1−(gJ µBJ )−1M(T, H)]2

2J −1−3(2J −1)(1−(gJ µBJ )−1M(0, H))+6J [1−(gJ µBJ )−1M(0, H)]2
.

(14)

If we perform the quotient (14) at temperatures low enough that we can takeM(T, H) ∼=
M(0, H), it can be easily shown that

λ2(T , H)/λ2(0, H) = 1 − 3ξ(1 − m(T , H)) ∼= m(T , H)p (15)
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with the Zener-like exponentp given by

p = 3ξ = 3
J (2J − 1) − 6Jδ + δ(1 + 4δ)

J (2J − 1) − 6Jδ + 3δ(1 + 2δ)
(16)

where

δ = J1m(0, H) 1m(0, H) = (gJµB)−1 1M(0, H) = 1 − (gJµB)−1M(0, H). (17)

Therefore, according to (15), for weak RMA systems under the FWA regime, a Zener-like
power law for the linear magnetostriction is predicted.

The 0 K reduced magnetization quantum defect is a consequence of the static spin
deviations and s.w. scattering produced by the RMA disorder, according to (10). Therefore
the important prediction is that for1M(0, H) 6= 0 and at low enough temperatures the
exponentp is smaller than three, i.e. a violation of them3 Zener law occurs. Notice that
for 1M(0, H) = 0 them3 power is regained. Also, for fixedJ , p decreases monotonically
when1m(0, H) increases, as we can see in figure 4, where we present the variation ofp

with 1m(0, H) for the Tb3+ ion (J = 6).

Figure 4. The theoretical dependence of the Zener-like exponentp against the 0 K reduced
magnetization defect1m(0) for the Tb3+ ion.

4. Results and comparison with model predictions

We have observed, for the first time, the above predicted violation of them3 Zener law in the
intermetallics TbxY1−xAl 2. Two previous results should be reported. In the inset of figure 3
we show the extrapolated 0 K values for the measured 12 T ‘saturation’ magnetization. For
the good ferromagnet TbAl2 the measured moment (at 4 K and 12 T) in a polycrystalline
sample is(8.7 ± 0.2) µB , within the experimental error very close to the unquenched free
momentµT b3+ = gJµB = 9µB . This result is corroborated by the spontaneous magnetic
moment determined in a TbAl2 single crystal, along the〈111〉 easy direction, obtaining
(9.0 ± 0.2) µB from the extrapolation down toH = 0 of the 4 K magnetization isotherm,
as shown in figure 5. On the other hand for 0.24 6 x 6 0.87 the moments are reduced
down to a constant value of(8.0 ± 0.2) µB (see the inset of figure 3). Moreover, for a
ferromagnet the expected single-crystal (cr.) magnetization value at remanence, obtained
from the polycrystalline (pol.) value, is given byµ(cr.) = µ(pol.)/0.866 [15]. For TbAl2,
this relation yields, from the 4 K remanence value of(8.0 ± 0.2) µB (see figure 3),
µ(cr.) = (9.2 ± 0.2) µB , signalling no CEF quenching again. The overall conclusion
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is that forx < 1 the observed1M(0, H) reduction is not a uniform CEF quenching effect,
but a static RMA disorder quantum effect. Therefore the TbxY1−xAl 2 series is a good
testing ground for observation of the predictedm3 magnetostriction law violation.

Figure 5. The magnetization isotherm at 4 K for applied magnetic field along the easy direction
〈111〉 for a TbAl2 single crystal. The dashed line is the zero-field magnetization extrapolation.

Also important is to decide the range of magnetic fields,H , to apply in order to obtain
the FWA regime. From the observation of the 4 K magnetization isotherms of figure 3, the
effective anisotropy field,Hk, can be estimated from the curve knees and therefore taken
as Hk

∼= 0.5 T. The FWA regime will be reached ifH > Hk, but H should not be too
much higher because the FWA regime would be severely distorted or even destroyed [11].
We chose a compromise, takingH = 3 T, in order to compare with our model results. In
figure 6 we present the 3 T magnetization isofields, at the CSG regime of the magnetic
phase diagram, and in figure 7 theλ2 magnetostriction isofields at 3 T aswell.

Figure 6. Magnetization isofields atH = 3 T for TbxY1−xAl 2 compounds, within the correlated
spin glass regime of the magnetic phase diagram.
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Figure 7. As figure 6, but for the second-order linear magnetostriction,λ2.

In figure 8, we present the double-logarithmic plots ofλ2(T , H = 3 T) against
M(T, H = 3 T), obtaining good linear relations for temperatures well belowTCSG(x);
the slopes are thep exponents. The exponentsp have been plotted againstx in the inset of
figure 8. For TbAl2, p = 3.0± 0.15, but for Tb concentrationsx < 1 they are substantially
smaller than three, in excellent agreement with our model prediction.

Figure 8. A double-log plot of the second-order linear magnetostriction,λ2, against the
magnetization (use of reduced units as in (15) is irrelevant), at bothH = 3 T and temperatures
below the P–CSG boundary. Lines are linear fits. Inset, Zener-like exponent,p, against Tb
concentration,x, for λ2, at an applied fieldH = 3 T.

As we signalled before we expect that at high enough applied fieldsH the FWA will
approach a 3D Heisenberg ferromagnet, parallel toH. This is, in fact, what happens, as
we show in figure 9, where at 12 T, for the compoundx = 0.87, p = 3.1 ± 0.15, with
p = 2.9 ± 0.15 and 2.7 ± 0.15 for x = 0.59 and 0.48 respectively, due to the increasing
RMA strengthD.

A good consistency check of our results is to compare the measuredp-values with
the theoretically predicted values, as shown in figure 4. To do this, in figure 10 we have
plottedp at 3 T against the experimental magnetization quantum defect at 3 T aswell, as
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Figure 9. The magnetic field dependence of the Zener-like exponent,p, for TbxY1−xAl 2

compounds, withx = 0.48, 0.59 and 0.87. The lines are guides for the eye.

obtained in the following way. Looking at the magnetization isotherms of figure 3 or at
the isofields of figure 6, we notice that at 3 T the magnetization for polycrystalline TbAl2

is smaller than the spontaneous value of(9.0 ± 0.2) µB , as obtained above. This lack
of saturation is probably due to the grain distribution misalignment, an effect that should
probably also be present for the compounds withx < 1. This means that in order to
calculate the magnetizationquantumdefect forx < 1 at 3 T wemust take as reference the
magnetization of polycrystalline TbAl2 at the same field. ChanginggJµB for this value in
the second of equations (17), we obtain for1m(0, 3 T) the values quoted in figure 10. As
we can see the decrease ofp with 1m(0, 3 T) is faster than the theoretical prediction. This
indicates that more theoretical work beyond the simple model here presented is needed. A
possibility for such disagreement is that the decoupling in (13) is not accurate enough.

Figure 10. Variation of the Zener-likep exponent with the reduced magnetization defect at
0 K and 3 T. The points (• ) are the experimental values at 3 T and the line the theoretical
prediction.
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5. Conclusions

In conclusion, we have shown that for crystalline weak random anisotropy magnets, in the
quasisaturated regime, the well established low-temperature magnetostrictionm3 Zener law
is clearly violated, as a consequence of the 0 K magnetization quantum reduction due to the
static spin deviations and 0 K s.w. scattering. It should be emphasized that because weak
RMA does not disturb the assumed cylindrical symmetry around the average magnetization
vector, M , direction, the relationshipλn ∼ mp between the linear magnetostriction,λn,
and the reduced magnetization,m, is preserved, although the Zener exponent,p, is severely
reduced from the valuen(n + 1)/2. This apparently is a consequence of the1M(0, H)

reduction, which in turn requires a reduction ofp, if spin cylindrical symmetry aroundM
is essentially preserved in the FWA regime over the transverse correlation length,R⊥.
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